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Phase chaos in coupled oscillators
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A complex high-dimensional chaotic behavior, phase chaos, is found in the finite-dimensional Kuramoto
model of coupled phase oscillators. This type of chaos is characterized by half of the spectrum of Lyapunov
exponents being positive and the Lyapunov dimension equaling almost the total system dimension. Intrigu-
ingly, the strongest phase chaos occurs for intermediate-size ensembles. Phase chaos is a common property of
networks of oscillators of very different natures, such as phase oscillators, limit-cycle oscillators, and chaotic
oscillators, e.g., Rossler systems.
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The Kuramoto model of coupled phase oscillatidrs N, its complexity develops and phase chaos becomes high
dimensional: The number of positive Lyapunov exponents
(LE) is found to equalN-2)/2 (N even or (N-3)/2 (N
odd), and the Lyapunov dimension reaches almost the total
system dimensiorN. We also show that the intensity of
is one of the most popular and often cited networks in modphase chaos in coupled oscillators, as given by the maximal
ern nonlinear science and applicatid. It reflects generic LE, decays quadratically with coupling strengthand in-
properties of ensembles of globally coupled limit-cycles os-verse proportionally to ensemble sidé Intriguingly, the
cillators of very different nature. Its applications cover a“most chaotic” phase chaos emerges for intermediate-size
wide range of self-organizing systems in the natural sciencesnsembles.
and medicine, e.g., Josephson-junction ari@js semicon- Phase chaos in coupled oscillators is a robust phenom-
ductor lasers arrayigl], coupled chemical reactionf§], and  enon. We found phase chaos in the Kuramoto mé¢tjefor
cardiac pacemaker cel[$]. Several neurological diseases, both uniform and Gaussian distributions of the natural fre-
such as Parkinson’s disease, are characterized by a synchouenciesw;. This type of chaos is generated by intrinsic
nization of ensembles of oscillatory neurons in particularphase interactions, and is also typical for other ensembles of
brain areas, where the normal firing is supposed to be uncopscillators of very different nature. We demonstrate that
related[7]. The development of desynchronizing deep brainphase chaos emerges in networks of limit-cycle oscillators
stimulation for the therapy of such disea$&k together with  and coupled chaotic Rossler systems. In the case of coupled
the successful clinical tests of this therapeutic apprd@th chaotic oscillators, phase chaos manifests itself in the ap-
have led to an increasing interest in nonsynchronized statggearance of additional chaotic components, where additional
of networks of oscillators. The design of optimal techniquespositive LEs(with respect to those of individual oscillatgrs
for selective disruption of synchronization requires sufficientemerge.
knowledge of relevant features of the variety of possible de- First, we consider the simplest coupled oscillator system,
synchronized states. where phase chaos occuié=4 in Eq.(1). By introducing

The Kuramoto mode(1) exhibits incoherent behavior at the phase difference variables=i.,— %, i=1,2,3, the di-
small and intermediate values of the coupling coefficiént mension of the Kuramoto model is reduced by one. The sys-
and a spontaneous transition to collective synchronization aem dynamics is then governed by a three-dimensional torus
K exceeds a certain threshd{d. In spite of numerous stud- flow ®. In Fig. 1(a) three LEs of the flow® are plotted
ies during the last two decades, being mainly based on wersus the coupling strenga The maximal LE\, is posi-
statistical approach in the thermodynamic limit—«, the tive for values ofK betweerkKy=~0.94 andK;=1.22, which
finite-dimensional character of modél) is still far from  implies the existence of a chaotic attracfofsee Fig. 1c)].
being understood2,10]. In particular, unsolved and chal- Before the chaotic attractéx is born, i.e., forK <K, the
lenging problems refer to global stability and convergence. system dynamics is mostly quasiperioféolid torus curve

In this paper, we present a complex high-dimensional chain Fig. 1(b)]. The transition to chaos &, ensues in accor-
otic regime in the Kuramoto modél), as a typical phenom- dance with the torus destruction scenddé]. With increas-
enon of phase chad41] in coupled oscillator systems. We ing K, first, the dynamics fits into a resonanc@ndow for
find that phase chaos in coupled oscillators extends ovef e (K, Kp), see inset in Fig. (B)]: A stable periodic orbiP
small and intermediate coupling strength up to the synchrofcrosses in Fig. (b)] and a saddl€) of the resonance 9: 10
nization transition. This type of chaos arises as soon aappear in a saddle-node bifurcationkat K, Then, at the
N=4 or more oscillators interact. With increasing system sizeexit from the resonance, the chaotic attradtas born[black

) K
G+ = sing g, i=1,...N, (1)
Nj:].
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FIG. 1. (Color) Chaos in the Kuramoto modél) of N=4 phase
oscillators. Natural frequenciesy=-1+2(i-1)/3, i=1,4. (a)

Lyapunov exponents vs parameterwith enlargement in the inset
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FIG. 2. High-dimensional chaos in the Kuramoto mo@bl of
N=20 phase oscillators. Natural frequencies=-1+2(i-1)/19,
i=1,20.(a) The nine largest Lyapunov exponents are positive for
the coupling parameter range<K <K; and successively change
their sign to negative a=K;, i=1,...,9. In the inset two expo-

for K €[0.91;0.96. \ | is a transverse LE of the invariant manifold Nentsk; and\, are shown in a log-log scale. The straight line there
M={p;=¢3}; (b) regular, andc) chaotic attractors in the Poincare is obtained by direct fit of the values kf and has slope of 2.08h)

sectiong;=0.

dots in Fig. 1c)]. With a further increase oK, the fractal
structure ofA becomes clearly visiblgred dots in Fig. (c)].

The Lyapunov dimension.

N ~K2 asK—0,

(2
which is supported in the inset in Fig(é2 by graphs ofz;

Finally, the chaotic attractoA is destroyed in a boundary and \q in the log-log scale. The chaotic behavior is fully
crisis atk=K;. Analogous chaotic phase dynamics with onedeveloped folK <K;: The Lyapunov dimensiofil7] almost

positive LE is found in the Kuramoto modél) of dimen-
sion N=5. Phase chaos becomes more developed\Nfob
andN=7, where two LEs are positive.

To shed light on the LEs’ arrangement for lardércon-

sider an example witiN=20 Kuramoto phase oscillators.

equals the total system dimensidh This is illustrated in
Fig. 2(b). As K increases, the Lyapunov dimension decays,
and the positive LEs change their sign to negative, one after
another, at some coupling parameter poikis<K,<---
<Ky as depicted in Fig. (@). Finally, atk=Kg, the maximal

The fine structure of all LEs in this case is shown inLE \; drops down through zero and the dynamics becomes

Fig. 2(@). Our calculations reveal that for the values Kf
smaller thanK;=0.55, nine LEs are positive\;>\,>---
>N\g>0), and nine LEs are negative. A& increases from

periodic up to the synchronization transitionkat K.. How-
ever, the extent of chaos, which is given by the magnitude of
the maximal LEA4, grows with increasind from zero. It

zero, the magnitudes of LEs, both positive and negativeteaches its maximum at some coupling parameter lug

grow quadratically(see also Ref/18])
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FIG. 3. (Colon (a) Lyapunov spectrumf);} of the Kuramoto mode{1) vs the normalized number of exponents for ensemble sizes
N=20 (red circleg, 40 (green diamonds and 80(blue asterisks (b) The maximal LEX; vs ensemble siz&l. The maximum is attained
Nmax=10. The inset shows; (circles in the log-log scale and a direct {8) of the values oh; with slope —0.99straight ling. Parameters

K=0.5 andw;=-1+2i-1)/(N-1), i=1,N.
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Se¢ T duced system of the phase differendebase chaosBelow
L4 the red curveK=K, at least one LE is positive, and the
1,3i<°h ' F0000000ssensnsasanannsnnans: dynamics is chaotic.
12f° For an essential part of the parameter diagram in Fig. 4,
K it the system dynamics is restricted to a symmetric invariant
£ e - manifold ./\/l={<pi=pr_i}, @i = a1~ i of dimension
ook 9 ' *x N NO:[N_/ 2]. The mamfol(_j/\/l exists provided the natural fre-

: u K, quencies are symmetrically allocated around the mean fre-
08¢ r { 1 quency(): w11~ w;=wn-i+1— On-i- IN-Manifold dynamics is
078 N . . \ E stable in the whole phase space provided all LEs transverse
061 9 LZQW E to the manifold are negativesee Fig. 1a) for N=4]. As
055+ R | shown in Fig. 4, this is valid for values &f andK above the

symmetry breaking bifurcation curdé=Kg, Note that the
symmetry breaking bifurcation cur€=Kg, lies below the
synchronization onset curvE=K.. Therefore, the desyn-
chronization transition in the Kuramoto modél) takes
place inside the manifolg1.

We find that the in-manifold dynamics is given by a Win-
free model[20]. For evenN it takes the form

FIG. 4. (Color) Phase diagram of the Kuramoto modd).
Natural frequenciesw;=—1+2(i-1)/(N-1), i=1,N. Bifurcation
curves are shownK, (black circles—synchronization transition;
K¢ (red squares—transition to chaosKg, (green diamonds—
symmetry breaking. Also .y (blue triangle$ and N;,ax (Mmaroon
crossepindicate parameter values, where paxand max\; are
attained, respectively. An enlargement of small rectangle is given in

. No
the inset.

t)/i:wi—ﬁsingbiz cosyj, i=1,... No. (4)
No i=1

In Fig. 3@ the LEs are plotted in numerical order for

ensemble sizef=20 (circles, N=40 (diamond$, and N (rqr oddN the model is similaf21].) The reduction to the
=80 (asteriskpfor K=0.5. The points of the Lyapunov spec- winfree model is valid for alk > K., and allows us to find
trum clearly fit, more and more densely, a smooth curve thafe pifurcation momenkK, analytically for anyN in Eq. (1)
converges to the zero axis Hs— % or K— 0. In Fig. 3b) the [21]. In the thermodynamic limitN—c, K, converges to
value of the maximal LR, is plotted versus the number of k. ,ramoto’s critical bifurcation valu&..=4/ [1], and the
oscillatorsN. \; becomes positive aN=4. Thereupon, it convergence scales asNL/ ’

grows with increasingN and reaches its maximal value  \ith an increase oi, not only the synchronization onset
maxy\;(N) at someNma. By increasingN beyondNmay  curveK=K,, but also three more bifurcation curvé&=K,
\; decreases and vanishesNas> . Our numerical approxi- K=Kg, andK=K,, converge toK...=m/4 being ordered
mations provide the decay rate &f as inversely propor- gk, <K <K<K (Fig. 4). It is worth nothing tha.,
tional toN coincides withK_, for all N= 26 (see inset in Fig. % and then
chaos emerges in the Kuramoto model just at the desynchro-

NG
M~ N nization transition. Furthermore, the distance betwkgpn,

()

asN — o,

Legitimacy of the scaling law3) can also be supported by
analytical argumentgl9].
Let us consider the Kuramoto modd) with the natural

andK; quickly diminishes ad increases, which implies that
for large N the maximal level of chaoticity is achieved al-
most immediately after the desynchronization. A typical

shape of the maximal L&, as a function oK is shown in
Fig. 2(a), whereN=20.

Finally, the bifurcation curveN=N,,,, depicted in Fig. 4
indicates the parameter values, whefattains its maximum
as a function ofN. For a given coupling strengti, Np,ax
tells us how many phase oscillators have to be coupled in the
Kuramoto model(1), to achieve a maximal level of chaos.
Intriguingly, the maximally chaotic ensemble sidé, .,
mostly lies between 10 and 15. We conclude that
intermediate-size groups of oscillators can generate much
more intensive phase chaos than small or big ones. A typical
dependence af; on ensemble sizBl is shown in Fig. &),
whereK=0.5.

Phase chaos is an essential property of coupled oscillator
systems and it is by no means restricted to the Kuramoto
long-term behavior in the Kuramoto mod@) are delineated model (1). Rather, it also occurs in globally coupled limit-
in the (N,K)-parameter plane fory=1. Synchronization: cycle oscillators and Rossler systems, as we demonstrate in
Above the black curv&K =K, there is only the phase-locked Fig. 5. Also, phase chaos has been detected in terms of posi-
dynamics given by a unique stable equilibrium of the re-tive LEs in previous studies of globally coupled Ginzburg-

frequencies w; evenly spaced in the interval-v,y],
wj=—y+2y(i-1)/(N-1), i=1,... N, corresponding to a
uniform densityg(w)=1/(2y) for |w|<vy and 0O otherwise.
Without loss of generality, one can pyt=1. Indeed, by
choosing a new timet—t'=9t one obtains (t; y;K)
=ys(yt;1;K/7y). This allows us to conclude that the LEs de-
pend ony as follows: \i(y,K)=y\;(1,K/vy). With Eq. (2)
this implies that

N ~K?y, asy— .

Therefore, ifK and N are fixed, LEs vanish inversely pro-
portional toy. On the other hand, ma#\;) linearly grows
proportionally tovy.

In Fig. 4 the regions of two qualitatively different types of
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0.10F( (1) tions cause chaoticity of the collective phase dynamics al-
LE i though individual oscillators behave only periodically when
o.00k left uncoupled. We have shown that the phase chaos is char-
i acterized by(N-2)/2 (N even or (N-3)/2 (N odd) positive
i Lyapunov exponents, and that the Lyapunov dimension
0105 reaches almost the total system sike Moreover, the
— Lyapunov exponents are scaled quadratically vidthas K
0.021 vanishes, and inverse proportionally Xy asN grows. The
LE [ results are carried out for the Kuramoto model with uniform
0.00F distribution of the natural frequencies but they are also
i valid for other frequency distributions. We found phase
0.020 chaos for finite-dimensional approximations of the Gaussian

distribution.
The Kuramoto model is probably the simplest network of
FIG. 5. (a) Ten largest LES\,, ... ,\qo for 10 globally coupled oscillators in which phase chaos emerges and that is acces-
limit-cycle oscillatorst:(aj+iwj—\zj|2)zj with ;=1 andw; uni- sible for analytical treatment. However, our finding of phase
formly distributed in the interval-1;1]. (b) Five LEs\g,..., A1,  Chaos in coupled limit-cycle oscillators and coupled Rdssler
for seven globally coupled chaotic R&ssler oscillators with param-systems(Fig. 5), together with previous findings in other
eters as in Ref.22] and Wi'[ha)j uniformly distributed in the inter-  systems of coupled oscillatofd8,23,24 show that phase
val [0.95;1.05. chaos is a common, probably universal phenomenon of net-

) ) ) works of very different nature.
Landau-type oscillatorg23], phase oscillators with nearest-

neighbor couplind24], and coupled Lorenz systerfi3]. We thank P. Ashwin, A. Politi, A. Pikovsky, and M. Hasler

In summary, we have discovered a phenomenon of highfor fruitful discussions. This study was supported by the Net-
dimensional phase chaos in the Kuramoto modeland  work of Excellence in Biosimulatior{BioSim, Grant No.
other ensembles of coupled oscillators. Nonlinear interac605137.

[1] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer, Berlin, 198 p. 319.

(Springer-Verlag, Berlin, 1984 [13] I. S. Aranson and L. Kramer, Rev. Mod. Phy#&4, 99 (2002.

[2] S. H. Strogatz, Physica 143 1 (2000; Nature (London  [14] D. Ruelle and F. Takens, Commun. Math. Phy20, 167
410, 268(2001); P. Ashwin and J. Borresen, Phys. Rev7E, (1972; S. Newhouse, D. Ruelle, and D. Takeitsid. 64, 35
026203(2004). (1979.

[3] K. Wiesenfeld, P. Colet, and S. H. Strogatz, Phys. Rev. Lett
76, 404(1996; Phys. Rev. E57, 1563 (1998.
[4] G. Kozyreff, A. G. Vladimirov, and P. Mandel, Phys. Rev.

115] C. Baesens, J. Guckenheimer, S. Kim, and R. S. MacKay,
Physica D49, 387 (1991).

Lett. 85, 3809(2000. [16] V. S. Afraimovich and L. P. Shilnikov, Am. Math. Soc. Transl.
[5] W. Wang, I. Z. Kiss, and J. L. Hudson, Chaa§, 248 (2000); 149, 176 (1991.
Phys. Rev. Lett.86, 4954(2001). [17] J. D. Farmer, E. Ott, and J. A. Yorke, PhysicarD153(1983.
[6] C. S. PeskinMathematical Aspects of Heart Physiologou- ~ [18] Z. Liu, Y.-C. Lai, and M. A. Matias, Phys. Rev. 57,
rant Institute of Mathematical Sciences, New York, 1975 045203R) (2003.
[7] A. Nini A. et al, J. Neurophysiol.74, 1800(1995. [19] A. Paliti (private communication
[8] P. A. TassPhase Resetting in Medicine and Biold@pringer,  [20] A. T. Winfree, The Geometry of Biological TimgSpringer,
Berlin, 1999; Europhys. Lett.53, 15(2001); 55, 171(2002); New York, 1980; J. T. Ariaratnam and S. H. Strogatz, Phys.
59, 199(2002; Biol. Cybern. 87, 102(2002; 89, 81 (2003 Rev. Lett. 86, 4278(2001).
Phys. Rev. E66, 036226(2002. [21] Y. L. Maistrenko, O. V. Popovych, and P. A. Tagesynchro-
[9] P. A. Tasset al. (unpublished nization and Chaos in the Kuramoto Mogde&kcture Notes in
[10] Yu. Maistrenkoet al, Phys. Rev. Lett93, 084102(2004. Physics Vol. 671(Springer, Berlin, 2006

[11] Phase chaos or phase turbulence is known to appear in tH&2] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev.
Ginzburg-Landau and Kuramoto-Sivashinsky equations Lett. 76, 1804(1996.
[12,13. Chaotic behavior is found in generic nonlinear sys-[23] V. Hakim and W.-J. Rappel, Phys. Rev. 46, R7347(1992;
tems on multidimensional tofil4,15. N. Nakagawa and Y. Kuramoto, Prog. Theor. Phg8, 313
[12] P. Manneville, Liapounov Exponents for Kuramoto- (1993; Physica D75, 74 (1994); 80, 307 (1995.
Sivashinsky Model Lecture Notes in Physics Vol. 230 [24] D. Topaj and A. Pikovsky, Physica 70, 118 (2002.

065201-4



