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A complex high-dimensional chaotic behavior, phase chaos, is found in the finite-dimensional Kuramoto
model of coupled phase oscillators. This type of chaos is characterized by half of the spectrum of Lyapunov
exponents being positive and the Lyapunov dimension equaling almost the total system dimension. Intrigu-
ingly, the strongest phase chaos occurs for intermediate-size ensembles. Phase chaos is a common property of
networks of oscillators of very different natures, such as phase oscillators, limit-cycle oscillators, and chaotic
oscillators, e.g., Rössler systems.
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The Kuramoto model of coupled phase oscillatorsf1g,

ċi = vi +
K

N
o
j=1

N

sinsc j − cid, i = 1, . . . ,N, s1d

is one of the most popular and often cited networks in mod-
ern nonlinear science and applicationf2g. It reflects generic
properties of ensembles of globally coupled limit-cycles os-
cillators of very different nature. Its applications cover a
wide range of self-organizing systems in the natural sciences
and medicine, e.g., Josephson-junction arraysf3g, semicon-
ductor lasers arraysf4g, coupled chemical reactionsf5g, and
cardiac pacemaker cellsf6g. Several neurological diseases,
such as Parkinson’s disease, are characterized by a synchro-
nization of ensembles of oscillatory neurons in particular
brain areas, where the normal firing is supposed to be uncor-
relatedf7g. The development of desynchronizing deep brain
stimulation for the therapy of such diseasesf8g, together with
the successful clinical tests of this therapeutic approachf9g,
have led to an increasing interest in nonsynchronized states
of networks of oscillators. The design of optimal techniques
for selective disruption of synchronization requires sufficient
knowledge of relevant features of the variety of possible de-
synchronized states.

The Kuramoto models1d exhibits incoherent behavior at
small and intermediate values of the coupling coefficientK,
and a spontaneous transition to collective synchronization as
K exceeds a certain thresholdKc. In spite of numerous stud-
ies during the last two decades, being mainly based on a
statistical approach in the thermodynamic limitN→`, the
finite-dimensional character of models1d is still far from
being understoodf2,10g. In particular, unsolved and chal-
lenging problems refer to global stability and convergence.

In this paper, we present a complex high-dimensional cha-
otic regime in the Kuramoto models1d, as a typical phenom-
enon of phase chaosf11g in coupled oscillator systems. We
find that phase chaos in coupled oscillators extends over
small and intermediate coupling strength up to the synchro-
nization transition. This type of chaos arises as soon as
N=4 or more oscillators interact. With increasing system size

N, its complexity develops and phase chaos becomes high
dimensional: The number of positive Lyapunov exponents
sLEd is found to equalsN−2d /2 sN evend or sN−3d /2 sN
oddd, and the Lyapunov dimension reaches almost the total
system dimensionN. We also show that the intensity of
phase chaos in coupled oscillators, as given by the maximal
LE, decays quadratically with coupling strengthK and in-
verse proportionally to ensemble sizeN. Intriguingly, the
“most chaotic” phase chaos emerges for intermediate-size
ensembles.

Phase chaos in coupled oscillators is a robust phenom-
enon. We found phase chaos in the Kuramoto models1d for
both uniform and Gaussian distributions of the natural fre-
quenciesvi. This type of chaos is generated by intrinsic
phase interactions, and is also typical for other ensembles of
oscillators of very different nature. We demonstrate that
phase chaos emerges in networks of limit-cycle oscillators
and coupled chaotic Rössler systems. In the case of coupled
chaotic oscillators, phase chaos manifests itself in the ap-
pearance of additional chaotic components, where additional
positive LEsswith respect to those of individual oscillatorsd
emerge.

First, we consider the simplest coupled oscillator system,
where phase chaos occurs:N=4 in Eq. s1d. By introducing
the phase difference variableswi =ci+1−ci, i =1,2,3, the di-
mension of the Kuramoto model is reduced by one. The sys-
tem dynamics is then governed by a three-dimensional torus
flow F. In Fig. 1sad three LEs of the flowF are plotted
versus the coupling strengthK. The maximal LEl1 is posi-
tive for values ofK betweenK0<0.94 andK1<1.22, which
implies the existence of a chaotic attractorA fsee Fig. 1scdg.

Before the chaotic attractorA is born, i.e., forK,K0, the
system dynamics is mostly quasiperiodicfsolid torus curve
in Fig. 1sbdg. The transition to chaos atK0 ensues in accor-
dance with the torus destruction scenariof16g. With increas-
ing K, first, the dynamics fits into a resonancefwindow for
KP sKsn,K0d, see inset in Fig. 1sadg: A stable periodic orbitP
fcrosses in Fig. 1sbdg and a saddleQ of the resonance 9: 10
appear in a saddle-node bifurcation atK=Ksn. Then, at the
exit from the resonance, the chaotic attractorA is bornfblack
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dots in Fig. 1scdg. With a further increase ofK, the fractal
structure ofA becomes clearly visiblefred dots in Fig. 1scdg.
Finally, the chaotic attractorA is destroyed in a boundary
crisis atK=K1. Analogous chaotic phase dynamics with one
positive LE is found in the Kuramoto models1d of dimen-
sion N=5. Phase chaos becomes more developed forN=6
andN=7, where two LEs are positive.

To shed light on the LEs’ arrangement for largerN, con-
sider an example withN=20 Kuramoto phase oscillators.
The fine structure of all LEs in this case is shown in
Fig. 2sad. Our calculations reveal that for the values ofK
smaller thanK1<0.55, nine LEs are positivesl1.l2. ¯

.l9.0d, and nine LEs are negative. AsK increases from
zero, the magnitudes of LEs, both positive and negative,
grow quadraticallyssee also Ref.f18gd

li , K2, asK → 0, s2d

which is supported in the inset in Fig. 2sad by graphs ofl1
and l9 in the log-log scale. The chaotic behavior is fully
developed forK,K1: The Lyapunov dimensionf17g almost
equals the total system dimensionN. This is illustrated in
Fig. 2sbd. As K increases, the Lyapunov dimension decays,
and the positive LEs change their sign to negative, one after
another, at some coupling parameter pointsK1,K2, ¯

,K9 as depicted in Fig. 2sad. Finally, atK=K9, the maximal
LE l1 drops down through zero and the dynamics becomes
periodic up to the synchronization transition atK=Kc. How-
ever, the extent of chaos, which is given by the magnitude of
the maximal LEl1, grows with increasingK from zero. It
reaches its maximum at some coupling parameter valueKmax,
then rapidly falls and vanishes atKch=K9.

FIG. 1. sColord Chaos in the Kuramoto models1d of N=4 phase

oscillators. Natural frequenciesvi =−1+2si −1d /3, i =1,4. sad
Lyapunov exponents vs parameterK, with enlargement in the inset
for KP f0.91;0.96g. l' is a transverse LE of the invariant manifold
M=hw1=w3j; sbd regular, andscd chaotic attractors in the Poincare
sectionw1=0.

FIG. 2. High-dimensional chaos in the Kuramoto models1d of
N=20 phase oscillators. Natural frequenciesvi =−1+2si −1d /19,

i =1,20. sad The nine largest Lyapunov exponents are positive for
the coupling parameter range 0,K,K1 and successively change
their sign to negative atK=Ki, i =1, . . . ,9. In the inset two expo-
nentsl1 andl9 are shown in a log-log scale. The straight line there
is obtained by direct fit of the values ofl1 and has slope of 2.05.sbd
The Lyapunov dimension.

FIG. 3. sColord sad Lyapunov spectrumhl jj of the Kuramoto models1d vs the normalized number of exponents for ensemble sizes
N=20 sred circlesd, 40 sgreen diamondsd, and 80sblue asterisksd. sbd The maximal LEl1 vs ensemble sizeN. The maximum is attained
Nmax=10. The inset showsl1 scirclesd in the log-log scale and a direct fits3d of the values ofl1 with slope −0.99sstraight lined. Parameters
K=0.5 andvi =−1+2si −1d / sN−1d, i =1,N.
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In Fig. 3sad the LEs are plotted in numerical order for
ensemble sizesN=20 scirclesd, N=40 sdiamondsd, and N
=80 sasterisksd for K=0.5. The points of the Lyapunov spec-
trum clearly fit, more and more densely, a smooth curve that
converges to the zero axis asN→` or K→0. In Fig. 3sbd the
value of the maximal LEl1 is plotted versus the number of
oscillators N. l1 becomes positive atN=4. Thereupon, it
grows with increasingN and reaches its maximal value
maxNl1sNd at someNmax. By increasingN beyond Nmax,
l1 decreases and vanishes asN→`. Our numerical approxi-
mations provide the decay rate ofl1 as inversely propor-
tional to N

l1 , N−1, asN → `. s3d

Legitimacy of the scaling laws3d can also be supported by
analytical argumentsf19g.

Let us consider the Kuramoto models1d with the natural
frequencies vi evenly spaced in the intervalf−g ,gg,
vi =−g+2gsi −1d / sN−1d, i =1, . . . ,N, corresponding to a
uniform densitygsvd=1/s2gd for uvu,g and 0 otherwise.
Without loss of generality, one can putg=1. Indeed, by
choosing a new timet° t8=gt one obtains cist ;g ;Kd
=cisgt ;1 ;K /gd. This allows us to conclude that the LEs de-
pend ong as follows: lisg ,Kd=glis1,K /gd. With Eq. s2d
this implies that

li , K2/g, asg → `.

Therefore, ifK and N are fixed, LEs vanish inversely pro-
portional tog. On the other hand, maxKslid linearly grows
proportionally tog.

In Fig. 4 the regions of two qualitatively different types of
long-term behavior in the Kuramoto models1d are delineated
in the sN,Kd-parameter plane forg=1. Synchronization:
Above the black curveK=Kc there is only the phase-locked
dynamics given by a unique stable equilibrium of the re-

duced system of the phase differences.Phase chaos:Below
the red curveK=Kch at least one LE is positive, and the
dynamics is chaotic.

For an essential part of the parameter diagram in Fig. 4,
the system dynamics is restricted to a symmetric invariant
manifold M=hwi =wN−ij, wi =ci+1−ci, of dimension
N0=fN/2g. The manifoldM exists provided the natural fre-
quencies are symmetrically allocated around the mean fre-
quencyV: vi+1−vi =vN−i+1−vN−i. In-manifold dynamics is
stable in the whole phase space provided all LEs transverse
to the manifold are negativefsee Fig. 1sad for N=4g. As
shown in Fig. 4, this is valid for values ofN andK above the
symmetry breaking bifurcation curveK=Ksb. Note that the
symmetry breaking bifurcation curveK=Ksb lies below the
synchronization onset curveK=Kc. Therefore, the desyn-
chronization transition in the Kuramoto models1d takes
place inside the manifoldM.

We find that the in-manifold dynamics is given by a Win-
free modelf20g. For evenN it takes the form

ċi = vi −
K

N0
sincio

j=1

N0

cosc j, i = 1, . . . ,N0. s4d

sFor oddN the model is similarf21g.d The reduction to the
Winfree model is valid for allK.Ksb and allows us to find
the bifurcation momentKc analytically for anyN in Eq. s1d
f21g. In the thermodynamic limitN→`, Kc converges to
Kuramoto’s critical bifurcation valueKc,`=4/p f1g, and the
convergence scales as 1/N.

With an increase ofN, not only the synchronization onset
curveK=Kc, but also three more bifurcation curves,K=Kch,
K=Ksb, and K=Kmax, converge toKc,`=p /4 being ordered
asKmax,Ksb,KchøKc sFig. 4d. It is worth nothing thatKch
coincides withKc for all Nù26 ssee inset in Fig. 4d, and then
chaos emerges in the Kuramoto model just at the desynchro-
nization transition. Furthermore, the distance betweenKmax
andKc quickly diminishes asN increases, which implies that
for large N the maximal level of chaoticity is achieved al-
most immediately after the desynchronization. A typical
shape of the maximal LEl1 as a function ofK is shown in
Fig. 2sad, whereN=20.

Finally, the bifurcation curveN=Nmax depicted in Fig. 4
indicates the parameter values, wherel1 attains its maximum
as a function ofN. For a given coupling strengthK, Nmax
tells us how many phase oscillators have to be coupled in the
Kuramoto models1d, to achieve a maximal level of chaos.
Intriguingly, the maximally chaotic ensemble sizeNmax
mostly lies between 10 and 15. We conclude that
intermediate-size groups of oscillators can generate much
more intensive phase chaos than small or big ones. A typical
dependence ofl1 on ensemble sizeN is shown in Fig. 3sbd,
whereK=0.5.

Phase chaos is an essential property of coupled oscillator
systems and it is by no means restricted to the Kuramoto
model s1d. Rather, it also occurs in globally coupled limit-
cycle oscillators and Rössler systems, as we demonstrate in
Fig. 5. Also, phase chaos has been detected in terms of posi-
tive LEs in previous studies of globally coupled Ginzburg-

FIG. 4. sColord Phase diagram of the Kuramoto models1d.
Natural frequenciesvi =−1+2si −1d / sN−1d, i =1,N. Bifurcation
curves are shown:Kc sblack circlesd—synchronization transition;
Kch sred squaresd—transition to chaos;Ksb sgreen diamondsd—
symmetry breaking. Also,Kmax sblue trianglesd and Nmax smaroon
crossesd indicate parameter values, where maxKl1 and maxNl1 are
attained, respectively. An enlargement of small rectangle is given in
the inset.
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Landau-type oscillatorsf23g, phase oscillators with nearest-
neighbor couplingf24g, and coupled Lorenz systemsf18g.

In summary, we have discovered a phenomenon of high-
dimensional phase chaos in the Kuramoto models1d and
other ensembles of coupled oscillators. Nonlinear interac-

tions cause chaoticity of the collective phase dynamics al-
though individual oscillators behave only periodically when
left uncoupled. We have shown that the phase chaos is char-
acterized bysN−2d /2 sN evend or sN−3d /2 sN oddd positive
Lyapunov exponents, and that the Lyapunov dimension
reaches almost the total system sizeN. Moreover, the
Lyapunov exponents are scaled quadratically withK, as K
vanishes, and inverse proportionally toN, asN grows. The
results are carried out for the Kuramoto model with uniform
distribution of the natural frequenciesvi but they are also
valid for other frequency distributions. We found phase
chaos for finite-dimensional approximations of the Gaussian
distribution.

The Kuramoto model is probably the simplest network of
oscillators in which phase chaos emerges and that is acces-
sible for analytical treatment. However, our finding of phase
chaos in coupled limit-cycle oscillators and coupled Rössler
systemssFig. 5d, together with previous findings in other
systems of coupled oscillatorsf18,23,24g show that phase
chaos is a common, probably universal phenomenon of net-
works of very different nature.
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work of Excellence in BiosimulationsBioSim, Grant No.
005137d.
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